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ABSTRACT
The small GTPase Arf4-based ciliary membrane-targeting complex recognizes specific targeting
signals within sensory receptors and regulates their directed movement to primary cilia. Activated
Arf4 directly binds the VxPx ciliary-targeting signal (CTS) of the light-sensing receptor rhodopsin.
Recent findings revealed that at the trans-Golgi, marked by the small GTPase Rab6, activated Arf4
forms a functional complex with rhodopsin and the Arf guanine nucleotide exchange factor (GEF)
GBF1, providing positive feedback that drives further Arf4 activation in ciliary trafficking. Arf4
function is conserved across diverse cell types; however, it appears that not all its aspects are
conserved across species, as mouse Arf4 is a natural mutant in the conserved α3 helix, which is
essential for its interaction with rhodopsin. Generally, activated Arf4 regulates the assembly of the
targeting nexus containing the Arf GAP ASAP1 and the Rab11a–FIP3–Rabin8 dual effector com-
plex, which controls the assembly of the highly conserved Rab11a–Rabin8–Rab8 ciliary-targeting
module. It was recently found that this module interacts with the R-SNARE VAMP7, likely in its
activated, c-Src-phosphorylated form. Rab11 and Rab8 bind VAMP7 regulatory longin domain
(LD), whereas Rabin8 interacts with the SNARE domain, capturing VAMP7 for delivery to the ciliary
base and subsequent pairing with the cognate SNAREs syntaxin 3 and SNAP-25. This review will
focus on the implications of these novel findings that further illuminate the role of well-ordered
Arf and Rab interaction networks in targeting of sensory receptors to primary cilia.

Abbreviations: CTS: Ciliary-Targeting Signal; GAP: GTPase Activating Protein; GEF: Guanine Nucleotide
Exchange Factor; RTC(s), Rhodopsin Transport Carrier(s); SNARE: Soluble N-ethylmaleimide-sensitive
Factor Attachment Protein Receptor; TGN: Trans-Golgi Network.
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Introduction

Primary cilia are ubiquitous organelles that originate
from the basal bodies and arise in different shapes to fit
their precise function in sensory receptor signalling.
The exceptionally elaborate primary cilia of the retinal
rod photoreceptor cells, the rod outer segments (ROS),
concentrate the G-protein-coupled receptor rhodopsin
and the accompanying phototransduction apparatus
into thousands of light-sensitive membranous discs,
creating a distinctive microenvironment that supports
the optimal detection and propagation of the visual
signal [1,2]. The light-sensitive ROS membranes are
continuously subjected to photo-oxidative damage,
necessitating their constant renewal to maintain photo-
receptor homeostasis [3,4]. A major challenge during
this process is the precise linkage of the ciliary cargo
uptake into the Golgi-to-cilia-directed membrane car-
riers, with the assembly of the membrane trafficking
machinery responsible for their ultimate fusion with

the periciliary plasma membrane [3,5]. Through con-
tinuous remodelling, the conserved Arf4-based ciliary-
targeting complex – containing the Arf GAP ASAP1
and the Rab11a–FIP3–Rabin8 dual effector complex,
which activates a regulator of carrier fusion Rab8 –
provides an ever-changing platform that guides the
ciliary cargo to its final destination [6–21]. Two recent
studies in retinal rod photoreceptors further delineated
the assembly of the targeting complex, and revealed
essential roles of the Arf GEF GBF1 and the
R-SNARE VAMP7, in the initial and final stages of
ciliary pathway, respectively [22,23].

Arf GTPases and their regulators

Arf4 belongs to the family of small GTPases that includes
Arf, Arf-like (Arl) and Sar proteins [24]. Arfs regulate
membrane trafficking, lipid metabolism, organelle mor-
phology and cytoskeleton dynamics [25]. The mammalian
Arfs consist of six isoforms (Arf1–Arf6); Arfs1–5 are
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associated with the Golgi and Arf6 functions at the plasma
membrane [26]. Arf4, Arl3, Arl6 and Arl13b are also
specifically implicated in membrane targeting to primary
cilia, dysfunction of which is a known cause of human
genetic diseases and syndromic disorders known as cilio-
pathies [6,26–30]. Arf GTPases function through the cycles
of GTP binding and hydrolysis that are regulated by Arf
guanine nucleotide exchange factors (GEFs) and GTPase
activating proteins (GAPs) [26,31–35]. GEFs and GAPs
control membrane association and signalling pathways of
Arf GTPases through activation cascades and positive-
feedback loops [36,37]. The prototypical Arf, Arf1, in its
GDP-bound form associates with membranes through the
N-terminal myristoyl group; however, GEF activation and
GTP binding cause a conformational transition, termed the
‘myristoyl switch’ that tightly couples Arf1 activation with
stable membrane association [38–43]. Unlike Arf1, GDP-
bound Arf4 and Arf5 can stably associate with membranes
without Arf GEF, using the N-terminal amphipathic helix
and a specific residue in the conserved domain [44,45], and
this difference may partially underlie their specific func-
tions that differ from those of Arf1.

In their active, membrane-bound form, Arfs interact
with multiple effectors such as coat proteins and lipid
modifying enzymes [46]. Because Arfs have intrinsically
low rate of GTP hydrolysis, inactivation and termination
of Arf signalling is executed by Arf GAPs, [33,35], which
in this way couple the proof-reading of cargo incorpora-
tion to budding of transport carriers [47]. Particularly, the
Arf GAPs ASAP1 belongs to a family of multifunctional
proteins containing pleckstrin–homology (PH), ankyrin
repeats, proline-rich and SH3 domains, which serve as
large scaffolds for the assembly of signalling complexes
[33,35,48]. ASAP1 functions both as an Arf GAP and an
Arf effector, because its N-terminal BAR (Bin/amphiphy-
sin/Rvs) domain, together with the GAP domain, acts as
a coincidence detector that senses the membrane phos-
pholipid composition and the presence of GTP-Arf and
responds by increasing membrane curvature, which may
facilitate carrier budding [49,50].

Assembly of the Arf4-mediated ciliary
membrane-targeting complex at the Golgi/TGN

The fundamental step that initiates the assembly of the
rhodopsin ciliary-targeting complex involves activated
Arf4, which interacts directly with the rhodopsin
C-terminal VxPx ciliary-targeting signal (CTS) at the
Golgi/TGN [51] (Figure 1). The specific GEF that acti-
vates Arf4 in transport to the cilia was recently identi-
fied as the Arf GEF GBF1 [22], which will be described
in detail below. The activated Arf4 and rhodopsin next
form a complex with the Arf GAP ASAP1 [6]. ASAP1

functions both as an Arf4 GAP and its effector, as
evidenced by the Arf4 mutant deficient in ASAP1
hydrolysis that causes retinal degeneration, even
though other Arf GAPs can mediate GTP hydrolysis
[6]. ASAP1 also controls selective binding of Rab11a
and the Rab11-Arf effector FIP3, which assists with
GTP hydrolysis on Arf4 [6–8,52]. The Arf4-dependent
Stage I of the complex assembly is completed by proof-
reading of the rhodopsin CTS VxPx coupled to Arf4
inactivation, permitting subsequent rhodopsin uptake
into ciliary-targeted rhodopsin transport carriers
(RTCs) (Figure 1).

Figure 1. Model depicting the assembly and conversion of the
Arf4-based rhodopsin ciliary-targeting complex at the Golgi/
TGN.
The assembly of the trafficking complex can be divided into two
stages: the Arf4-dependent Stage I and the post-Arf4 Stage II. In
Stage I, activated Arf4 recognizes the CTS VxPx of rhodopsin. Arf4,
rhodopsin, and Rab6 cooperate to localize and activate the Arf GEF
GBF1 at the trans-Golgi. Through positive feedback, Arf4 is further
activated by GBF1. Coincidence detection of activated Arf4, acidic
phospholipids and PIP2 recruits the Arf GAP ASAP1 to the Golgi/
TGN, where it forms a complex with rhodopsin and Arf4, and
selectively binds Rab11 and FIP3. Proofreading of CTS VxPx that
regulates rhodopsin uptake into RTCs is coupled with GTP hydro-
lysis on Arf4 by ASAP1, assisted by FIP3, and followed by the
departure of inactivated Arf4. In Stage II, ASAP1 serves as
a platform for the assembly of the Rab11-FIP3-Rabin8 dual effector
complex. Following GTP hydrolysis on Arf4, FIP3 departs the com-
plex and the R-SNARE VAMP7 likely replaces it. Concurrently,
Rabin8 activates GDP-bound Rab8. Rabin8 is phosphorylated by
NDR2 kinase (asterisk), which increases its affinity for the Sec15
component of the exocyst membrane-tethering complex. VAMP7 is
phosphorylated by the c-Src within the LD (asterisk) and activated
for pairing with Q SNAREs syntaxin3 and SNAP-25, which ultimately
drives RTC fusion with the periciliary plasma membrane.
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In Stage II of the complex assembly, formation of
nascent RTCs is coupled to the assembly of the mem-
brane trafficking machinery responsible for their
fusion, directing RTCs to the cilium (Figure 1).
Following Arf4 inactivation and dissociation, ASAP1,
Rab11a and FIP3 remain associated at the TGN where
they recruit the Rab8 GEF Rabin8 [7,8]. This leads to
the formation of a distinctive Rab11–FIP3–Rabin8 dual
effector complex unique to Rab11, the ramifications of
which in membrane trafficking have been reviewed
previously [10]. Rab11–FIP3–Rabin8 complex assem-
bles through multiple weak interactions that create
a high-avidity complex, thus promoting cooperation
between the two effectors in the execution of Rab11-
directed functions [8–10]. Whereas Rab11 effector FIP3
stimulates the GAP activity of ASAP1 [52], the Rab11-
mediated recruitment of Rabin8, the Rab8-specific
GEF, initiates the Rab11-Rabin8–Rab8 ciliogenesis cas-
cade [17–19]. Finally, the Rab11-Rabin8-Rab8 module
directs Golgi-to-cilia trafficking, by capturing the RTC
R-SNARE VAMP7 through direct binding of Rab8 and
Rab11 to the VAMP7 regulatory longin domain (LD),
and Rabin8 to its SNARE motif. With the R-SNARE
aboard, RTCs are equipped for fusion via VAMP7
pairing with plasma membrane Q SNAREs syntaxin 3
and SNAP-25 [22].

The role of Arf4 in the ciliary
membrane-targeting complex

Arf4 was identified as a regulatory protein that specifically
binds the rhodopsin CTS VxPx [51]. In those experiments,
the effects of blocking the action of Arf4 were functionally
equivalent to blocking the rhodopsin CTSVxPx,mutations
in which cause severe forms of autosomal dominant reti-
nitis pigmentosa (adRP) [51,53,54]. Subsequent studies in
transgenic frogs demonstrated that the expression of the
Arf4I46D mutant, deficient in GTP hydrolysis by ASAP1,
causes dysfunctional rhodopsin trafficking and rapid ret-
inal degeneration [6], verifying a crucial role of the VxPx
motif and the Arf4-based targeting complex in ciliary traf-
ficking. Supporting this paradigm for sorting into transport
vesicles, a specific CTS and Arf4 provide the directionality
and increase the efficiency of ciliary transport of several
sensory receptors [16,20,21,55,56]. However, the role of
Arf4 in rhodopsin trafficking has been challenged using
conditional knockout mouse retinas [57]. In our recently
published study [23], we extensively addressed the issues of
significance when comparing the data from the two pub-
lished Arf4 in vivo models, the frog and the mouse, which
are briefly summarized here: (i) Absence of a gene vs.
a dominant negative action often have different effects, as
exemplified by differences between rhodopsin mutant and

knockout mouse models [58–62]. (ii) The volume of mem-
brane trafficking in the frog eye exceeds by an order of
magnitude that of the rodent rods [63]. (iii) Mouse models
do not always recapture retinal membrane trafficking dis-
ease phenotype e.g. despite a relatively faithful manifesta-
tion of the hearing and balance disorders found in Usher
syndrome, none of the Usher 1 mouse models undergo
retinal degeneration [64]. Neither the frog nor mouse
models are authentic representations of the human eye,
but both aid in dissecting disease-related processes. The
most likely explanation for the apparent discrepancy
between the two models is that in the conditional mouse
Arf4 knockout a compensatorymechanism allows rhodop-
sin trafficking to proceed, perhaps at a suboptimal level,
because the mouse model system has low demands on
membrane trafficking volumes.

Conversely, by magnifying the role of trafficking
through its high volumes of membrane synthesis, the well-
established frog model system revealed the stages and
molecular machineries involved in the vectorial transport
of ciliary cargo. Our research using the frog model has
shown that the Arf4 α3 helix, encompassing the
IQEAAEELQKML peptide, directly crosslinks to rhodop-
sin during membrane trafficking [51]. Notably, the human
and frog Arf4 are 95% identical and anti-frog Arf4 anti-
body readily recognizes human Arf4 [8]. While reflecting
on a potential compensatory mechanism in use in mouse
Arf4 KO, we discovered that mouse is a natural mutant in
the crucial Arf4 α3 helix (Figure 2). This is significant
because the VxPx CTS of rhodopsin is surrounded by the
conserved positively charged residues on the cytoplasmic
surface of rhodopsin, which likely interact with the nega-
tively charged residues in Arf4 α3 helix, resulting in an
increase in affinity of the Arf4-Rhodopsin interaction
probably without providing specificity (Figure 2(a,b). The
specificity is likely provided by the essential hydrophobic
C-terminal VxPx CTS that could interact with the neigh-
bouring hydrophobic patch of Arf4 (Figure 2(a,b). As
shown in Figure 2(c), the alignment of Arf4 sequences
from several species reveals high conservation of the
amino acid residues comprising Arf4 α3 helix. Compared
to the frog, the human Arf4 has only conservative substitu-
tions, whereas the bovine sequence is identical to that of the
frog. In mouse and rat two acidic amino acid residues are
changed to hydrophobic amino acids, creating
a hydrophobic stretch instead of a negatively charged one
(Figure 2(b)), which potentially conveys dissimilar func-
tional advantage to rodent Arf4. This type of substitution,
typically used in mutagenesis experiments to abolish pro-
tein-protein interactions, likely disrupts rhodopsin-Arf4
interactions. In fact, there is high likelihood that the
mouse Arf4 either does not interact with rhodopsin, or
does so with diminished affinity.
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Interestingly, unlike Arf4, Arf5 is 100% conserved
within the species compared in Figure 2(c). Mouse Arf5
is a possible orthologue of human and frog Arf4, as it
possesses the acidic residues potentially important for
interactions with rhodopsin (Figure 2(c)). Arf4 and Arf5
could be interchangeable in mouse photoreceptors, but not
in cells with high volumes of cargo transiting through the
secretory pathway [57], where directionality and efficiency
are of essence. Notably, GBF1 has high exchange activity
on Arf5 [65] and its activation of both Arf4 and Arf5
initiates an activation cascade at the TGN [66]. If Arf5
indeed functions in mouse rod photoreceptors as the
human and frog Arf4 orthologue, the distinct downstream
functions of Arf4 vs. Arf5 may influence the subsequent
steps in rhodopsin trafficking. They may consequently
diverge from the highly conserved Arf4-mediated pathway
that includes Rab11 and Rab8, which were also reported to
be dispensable in the mouse KOs [67]. In contrast to that
study, our study in transgenic frogs showed that the Rab8
T22N dominant-negative mutant, deficient in GTP

binding, caused dysfunctional rhodopsin trafficking and
rapid retinal degeneration, demonstrating an essential
role for Rab8 in rhodopsin trafficking [12], consistent
with the role of Rab8 as a regulator of carrier fusion with
the periciliary plasmamembrane, which is dysfunctional in
human genetic diseases and ciliopathies [13–15,30,68–70].
These examples indicate that mouse knockout models
addressing intracellular processes regulated by Arf and
Rab GTPases are subject to further verification that can
be accomplished by selecting for such studies the animal
models in which these processes are conserved.

Activation of Arf4 by the Arf GEF GBF1

The spatiotemporally restricted activation of Arf4
through GTP binding is crucial to its function in com-
plex assembly; however, available information about
the signals that Arf GEFs recognize in order to activate
Arfs is still scarce. These signals were examined in
a recent study, which established that sensory receptor

Figure 2. Arf4 α3 helix, which participates in rhodopsin interactions, is evolutionary conserved, with the exception of mouse and rat.
(a) The crystal structure of bovine rhodopsin (PDB code 1F88) is shown in orange cartoon representation. Residues forming a basic patch
near the C-terminal tail are shown in stick representation and labelled according to the bovine sequence. The position of the C-terminal
QVAPA tail is indicated (note that the linker connecting the C-terminal tail to the rhodopsin core domain was not resolved in the crystal
structure). (b) Crystal structure of human Arf4 (PDB code 1Z6X) is shown as a green cartoon representation and that of mouse Arf4
(modelled based on the human Arf4 structure) as a cyan cartoon representation. GDP (sticks) and a magnesium ion (pink ball) mark the
GTPase active site of Arf4. Residues forming the acidic patch on human Arf4 and neighbouring hydrophobic residues are shown as sticks
and labelled according to the sequence. (c) Sequence alignment of the region corresponding to helix 3 of Arf4 and Arf5 and the
surrounding residues, from different species. The acidic residues substituted with hydrophobic residues in mouse and rat Arf4 are boxed.
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cargo, such as rhodopsin, directly promotes its own
intracellular progression to the cilia by providing
input to the specific large Arf GEF, GBF1, to activate
a cognate Arf, Arf4, in ciliary trafficking [23]. In the
likely scenario, this process starts with multiple random
activation events that initially generate a small number
of active Arf4 clusters at the Golgi/TGN. Next,
a functional ternary complex – sensitive to the GBF1
inhibitor Golgicide A – is formed between GBF1, acti-
vated Arf4, and the ciliary cargo, rhodopsin [23],
further activating Arf4 through the operation of an
autocatalytic amplification mechanism (positive feed-
back) [71], building up levels of active Arf4, which
leads to the assembly of the ciliary-targeting complex.
The emergence of newly synthesized rhodopsin in the
Golgi is essential for this process, as blocking of rho-
dopsin transit through the Golgi by cycloheximide
abolishes all interactions between GBF1, Arf4 and rho-
dopsin, indicating the requirement of cargo influx for
the complex formation in vivo [23].

GBF1 belongs to the BIG/GBF family of Golgi-
localized large Arf GEFs, which comprises multifunc-
tional scaffold proteins that contain the highly con-
served Sec7 domain involved in the nucleotide-
exchange activity. Arf GEFs are auto-inhibited in the
cytosol [72]. Their membrane association and catalytic
activity are controlled by cooperative allosteric regula-
tion via coincidence detection by multiple regulatory
domains: DCB (dimerization and cyclophilin binding)
domain, a HUS domain (homology upstream of Sec7
domain) and HDS (homology downstream of Sec7)
domains, which integrate direct inputs from mem-
branes and multiple activated Arfs and Rabs [34,36].
For example, the prototypic Arf GEF, the yeast Sec7, is
differentially regulated by two Arfs (Arl1 and Arf1) and
two Rabs (YPT1/Rab1 and YPT31/32/Rab11), interact-
ing with different regulatory domains and collectively
mediating its TGN localization and allosteric activation
[73–76].

It has been reported that both GBF1 and Arf4 function
within the early Golgi, and at the TGN [6,7,44,77–83].
The Golgi localization of GBF1 is mediated by the HDS1
and HDS2 domains that appear to act as PIP-binding
domains [84–87]. In photoreceptors, the N-terminal
DCB-HUS domain of GBF1 directly interacts with Arf4
and with newly synthesised rhodopsin [23]. Notably, the
DCB domain of GBF1 also directs Golgi localization
through interactions with Golgi-associated Rabs, like
Rab1b [88,89]. In support of this mode of action, our
recent study revealed that in photoreceptors GBF1 nearly
completely colocalizes with Rab6 at the trans-Golgi [23].
We thus hypothesized that Rab6 may control the trans-
Golgi membrane association of GBF1.

Interaction of the Arf GEF GBF1 with the small
GTPase Rab6

Rab6 is one of themost conservedRabGTPases throughout
evolution and the most abundant Rab protein associated
with the Golgi complex. The two ubiquitous isoforms,
Rab6A and Rab6A’, regulate transport in and out of the
Golgi, including anterograde transport between the Golgi
and the plasma membrane [90–92]. Rab6 was the first and
the most abundant Rab GTPase identified as a potential
regulator of rhodopsin trafficking [93]. Surprisingly, Rab6
function in rhodopsin trafficking is conserved in
Drosophila photoreceptors as well, despite many differ-
ences between invertebrate and vertebrate photoreceptor
cells [94–96]. The downstream effectors of Rab6 in photo-
receptors are not known, thus we tested the notion that
activated Rab6 controls trans-Golgi membrane association
of GBF1. We discovered that GBF1 overlaps with Rab6 at
the trans-Golgi significantly better than with GM130 at the
cis-Golgi, as revealed by pixel colocalization analysis per-
formed within the Golgi [23]. We thus examined their
direct interaction and now demonstrate that
GTPγS-activated Rab6, and the Rab6Q72L mutant directly
and specifically interact with the DCB-HUS domain of
GBF1 (Figure 3(a–c)). We additionally show, using an
established retinal cell-free system [97,98], that the peptide
mimicking the Rab6 switch 1 domain responsible for
recruiting specific effectors (AA 37–52) [99] completely
inhibits rhodopsin trafficking in vitro (Figure 3(d)).
Peptides corresponding either to the highly homologous
domain of Rab7 (AA 33–47), or to the Rab6 SF3 domain
that is recognized by the Rab escort protein (REP) involved
in prenylation [100] (AA 107–120)(Figure 3(e)) have no
effect. Thus, a relevant binding partner and effector of Rab6
at the Golgi/TGN is another important regulator involved
in RTC budding. We suggest that it is GBF1, which was
previously reported as one of the top interactors of active
Rab6 [101]. Several other known effectors link Rab6 to the
molecular motors [102,103], including Myosin II, which,
along with KIF20A, regulates fission of Rab6-positive car-
riers and exit from the Golgi [104,105]. Rab6 interacts
specifically with the transport protein particle II
(TRAPPII) complex, which is essential for ciliogenesis
through its interaction with Rabin8 and activation of
Rab11 [19,101,106]. One of the Rab6 effectors, Rab6IP1,
directly links Rab6 and Rab11, whereas other effectors
enable Rab6-postive carriers to acquire Rab8, which regu-
lates their fusion [107–110]. In this context, photoreceptor
Rab6 plays a crucial role in the Golgi exit of membrane
cargo directed to the primary cilium, in part by concentrat-
ing GBF1 at Golgi exit sites where it could both sense the
emerging cargo, and recruit and activate Arf4 for the ciliary
cargo delivery via the Rab11-Rabin8-Rab8 pathway.
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RTC fusion: Rabs and their effectors provide
framework for SNARE assembly

Activation of Rab8 by Rabin8 renders nascent RTCs com-
petent for fusion with the periciliary plasma membrane,
because Rab8 regulates the final stages of polarized mem-
brane traffic, fusion of ciliary-targeted carriers and ciliogen-
esis [7,11–15,30,68]. Phosphorylation of T72 of the switch
II region of Rab8 by the Parkinson’s disease kinase LRRK2
results in a failure of Rabin8-mediated activation of Rab8
[111] and consequently inhibits cilium formation
[112,113]. Rabin8 is phosphorylated at S272 by NDR2

kinase (also known as STK38L), which regulates the switch
in binding specificity of Rabin8 from PS to the Sec15
component of the exocyst complex that mediates carrier
tethering at the periciliary plasma membrane [114].
Mutations inNDR2 affecting Rabin8 function cause canine
retinal degeneration corresponding to human ciliopathy
Leber congenital amaurosis (LCA) characterized by early-
onset blindness [115,116], highlighting the central role of
the Rab11-Rabin8-Rab8 pathway.

The fusion event through which RTCs deliver rhodop-
sin to the ciliary base is driven by the pairing of plasma

Figure 3. Assembly of the Arf4-mediated ciliary membrane-targeting complex at the trans-Golgi: the Arf GEF GBF1 is an effector of
Rab6.
(a) Schematic of GBF1. DCB-HUS (AA 1–710) and Sec7-HDS1 (AA 695–1066) are indicated. (b) GST-DCB-HUS, or GST (Ctrl), were incubated
with recombinant human Rab6 bound to GTPγS, or with Rab6Q72L or T22N mutants. Bound Rab6 was detected by immunoblotting. The
GST fusion proteins were detected with anti-GST antibody. Arrowheads point to the GST-fusion proteins used in pulldowns. (c) GST-DCB-
HUS, GST-Sec7-HDS1, or GST (Ctrl), were incubated with Rab6 bound to GTPγS, or with Rab6Q72L mutant and bound Rab6 was detected as
above. (d) Frog retinas were pulse-labelled for 60 min and retinal PNS was incubated for 30 min with 50 µM peptides, as indicated in the
panel, prior to a 2 h cell-free chase; photoreceptor membranes were fractionated into Golgi, TGN and RTCs as described [6,98], and
radiolabelled proteins analysed by SDS-PAGE and autoradiography ([35S]-Rh). The Rab6 effector peptide mimicking switch I arrested
rhodopsin in the Golgi, where Rab6 and GBF1 are localized [23,93] and potently and specifically inhibited its uptake into RTCs. The Rab7
switch I and the Rab6 SF3 peptide had no effect. (e) The ribbon model of Rab6. Switch I is coloured blue, and switch II is red. Modified from
ref [110]. SF3 domain is indicated.
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membrane SNAREs syntaxin 3 and SNAP-25, regulated by
omega-3 docosahexaenoic acid (DHA) [117]. The long
sought after RTC R-SNARE that pairs with syntaxin 3
and SNAP-25 is now identified as VAMP7 or TI-VAMP
[22]. Overall, VAMP7 is known to regulate fusion of trans-
port carriers with the plasma membrane; plasma mem-
brane expansion and neurite outgrowth; Golgi
homeostasis and Golgi-to-plasma membrane transport;
selective apical exocytosis and polarity, as well as ciliogen-
esis [118–128]. VAMP7 possesses a N-terminal regulatory
LD, which is generally involved in binding small GTPases
[129–131]. The closed auto-inhibited conformation of
VAMP7, in which LD folds back onto the SNARE motif,
is stabilized in part by tyrosine 45 in the LD [119,132].
Vps9-ankyrin repeat protein/Ankrd27 (VARP) stabilizes
VAMP7 LD in the closed conformation substantially
diminishing SNARE complex formation [133].
Phosphorylation at tyrosine 45 by c-Src kinase activates
VAMP7 Q-SNARE binding and complex assembly [134].
In photoreceptors, c-Src phosphorylation occurs at the
Golgi, indicating that VAMP7 is trafficking to the cilium
in its activated form [22].

During RTC formation and trafficking, VAMP7 inter-
acts with the Rab11-Rabin8-Rab8 trafficking module.
Rab11 and Rab8 bind VAMP7 LD, whereas Rabin8 inter-
acts with the SNARE domain [22]. FIP3 regulates
VAMP7 access to Rab11, as the interactions between
FIP3 and VAMP7 with Rab11 are mutually exclusive.
Rabin8 and VARP directly interact in ciliary trafficking
of VAMP7, and their respective affinities for VAMP7 may
be regulated by its c-Src phosphorylation and activation.
To better understand interactions of VAMP7 with its
numerous partners, we wanted to visualize the topogra-
phy of the putative Rab11-Rabin8-VAMP7 complex. We
modelled it by superposition of the structure of the SRP
receptor [130] as a model for small GTPase-LD interac-
tion, onto the structure of Rab11-Rabin8-FIP3 complex
[9] and VAMP7-VARP complex [133] (Figure 4). This
model predicts that VAMP7 LD binds to the canonical
effector-binding site of Rab11a and overlaps with FIP3.
Strikingly, if VAMP7 bound to Rab11-Rabin8 complex is
in the inactive closed conformation, in which the VAMP7
SNARE domain folds over the LD [133], the arginine
(R150) at the zero layer would point straight towards
and clash with the most C-terminal α5 helix of Rabin8
[22]. We postulate that phosphorylation by c-Src kinase
induces conformational change in VAMP7 to remove the
potential steric hindrance and allow for binding to
Rabin8. This, in turn would enable the Rab11-Rabin8-
Rab8 module to capture VAMP7 for delivery to the ciliary
base, and subsequent pairing with the cognate SNAREs
syntaxin 3 and SNAP-25, to regulate the fusion event

through which RTCs deliver rhodopsin in the final stages
of ciliary-directed trafficking.

Concluding remarks

Communication between Arf and Rab GTPases via regu-
latory protein and effector networks ultimately leads to the
directional delivery of ciliary membrane cargo. Ciliary
sensory receptors, such as rhodopsin, are active partici-
pants in these processes through direct interactions with
select components of the ciliary trafficking complexes.
While these interactions are highly evolutionary conserved,
the species conservation is unclear in mouse models of
ciliary trafficking in photoreceptor cells. Future research
will reveal the level of conservation of the Arf4-based
ciliary-targeting complex in the assembly of the membrane
traffickingmachinery fundamental to the biogenesis of cilia
and cilia-derived sensory organelles, and its involvement in
ciliopathies and other degenerative diseases.
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